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= Abstract =

Objective To explore the artificial intelligence (Al)-assisted diagnosis system of thyroid cancer based
on deep transfer learning and evaluate its clinical application value. Methods The HE sections of 682
cases thyroid disease patients (including benign lesions, papillary carcinoma, follicular carcinoma,
medullary carcinoma and undifferentiated carcinoma) in the Pathology Department of the Renmin
Hospital of Wuhan University were collected, scanned into digital sections, divided into training sets
and internal test sets according to the ratio of 8:2, and the training sets were labeled at the pixel level
by pathologists. The thyroid cancer classification model was established using ResNet-50 image
classification algorithm model. In the process of model training, the parameters of the breast cancer
region recognition model are taken as the initial values, and the parameters of the thyroid cancer
region recognition model are optimized through the transfer learning strategy. Then use the test set
and 633 intraoperative frozen HE section images of thyroid disease in Jianli County Renmin Hospital,
Jingzhou City, Hubei Province as the external test set to evaluate the performance of the established
Al-assisted diagnostic model. Results In the internal test set, without the use of the breast cancer
region recognition model transfer learning, the accuracy of the Al-assisted diagnosis model was 0.882,
and the area under the Receiver operating characteristic (AUC) value was 0.938; However, in the use
of the Transfer learning model, the accuracy of the Al-assisted diagnosis model for was 0.926, and the
AUC value was 0.956. In the external test set, the accuracy of the zero learning model is 0.872, the
AUC value is 0.915, and the accuracy of the Transfer learning model is 0.905, the AUC value is 0.930.
Conclusion The Al-assisted diagnosis method for thyroid cancer established in this study has good
accuracy and generalization. With the continuous development of pathological Al research, transfer
learning can help improve the performance and generalization ability of the model, and improve the
accuracy of the diagnostic model.
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= Abstract =

Controversy exists regarding whether patients with low-risk papillary thyroid microcarcinoma
(PTMC) should undergo surgery or active surveillance; the inaccuracy of the preoperative clinical
lymph node status assessment is one of the primary factors contributing to the controversy.
Predicting the lymph node status of PTMC preoperatively with high accuracy is an imperative
need. This study aims to predict lymph node status using a deep learning method for more precise
triage of PTMC patients. We selected 208 liquid-based preparations as our research objects; all of
these instances underwent lymph node dissection and, aside from lymph node status, were
consistent with low-risk PTMC. We separated them into two groups according to whether the
postoperative pathology showed central lymph node metastases. The deep learning model was
expected to predict, based on the preoperative liquid-based preparation, whether PTMC was
accompanied by central lymph node metastases. Our deep learning model attained a sensitivity,
specificity, positive prediction value (PPV), negative prediction value (NPV), and accuracy of 78.9%
(15/19), 73.9% (17/23), 71.4% (15/21), 81.0% (17/21) and 76.2% (32/42), respectively. The area under
the receiver operating characteristic curve (AUC) value was 0.850. The predictive performance of
the deep learning model was superior to that of the traditional clinical evaluation, and further
analysis revealed the cell morphologies that played the key role in model prediction. Our study
suggests that deep learning is a reliable strategy for predicting central lymph node metastases in
thyroid micropapillary carcinoma, and its performance surpasses that of traditional clinical

examination.
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Figure 1. Pipeline of the deep learning framework presented in this study.
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Figure 2. Lymph node status prediction by deep learning model. (A) Accuracy and cross-entropy
loss curve in the training set. (B) Confusion matrix of the deep learning model in the test set. (C)
Evaluation matrix of deep learning and traditional clinical evaluation in predicting CLNM in

PTMC. (D) The receiver operating characteristic (ROC) curves for predicting CLNM of PTMC of

deep learning and traditional clinical evaluation.
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Background:

To analyze and discuss the actual application of digital pathology scanners from six different
manufacturers in the Pathology Department of Ruijin Hospital, affiliated with Shanghai Jiao Tong
University School of Medicine. We aim to present our experience with the challenges encountered
and enhance the comprehension of digital pathology scanners in different regions of China.This will
enable us to meet the diverse demands of clinical practice, education, and research, while

expediting the digitization and intelligent development of pathology in China.

Design:

We collected various types of pathology slides and evaluated the mechanical performance and
image quality of scanners from different manufacturers by practically applying them in work
scenarios.Additionally, using gastric biopsy specimens as an example, we developed a preliminary
artificial intelligence model for identifying the benign and malignant nature of gastric biopsies. This
model was trained on Whole Slide Images (WSI) generated by one of the scanners. To validate the
model, the same batch of physical glass slides were used and scanned by the remaining scanners to

generate WSIs.

Results:

The WSI images generated by the digital pathology scanners were in line with the routine practice
of examining slides under a microscope. Nevertheless, there were variations in mechanical
performance and image quality among different scanners, and the specifications provided by
manufacturers were inadequate for a comprehensive evaluation of their performance.The algorithm
model, which relied on WSI images generated by a single scanner, obtained an impressive AUC
score of 0.88 on the test set produced by that particular scanner. However, when the model was
validated on WSIs generated by the other scanners using the same batch of physical glass slides for

testing, noticeable declines in performance were observed, highlighting significant discrepancies.

Conclusions:



It is imperative to establish guidelines and standards for the selection of suitable scanners in the
implementation of digital intelligent pathology. Pathology departments should evaluate scanner
performance based on their current digital workflow status and opt for digital pathology scanners
that align with the department's developmental needs. Moreover, enhancing quality control
requirements for physical slides can significantly improve scanning efficiency and the quality of
Whole Slide Images (WSIs). In order to effectively strategize the implementation of digital
intelligent pathology, expedite the integration of digital pathology and artificial intelligence into
clinical practice and translational medicine, it is crucial to establish pertinent standards for WSIs.
These standards will facilitate the advancement of computational pathology and cater to the diverse

needs of next-generation diagnostic pathology.
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(Figure 1) Subjective evaluation of the images: The images that received positive subjective

evaluations are consistent with the standard practices of examining microscopic slides. After
scanning tissues of different sizes, textures, and types, the whole slide imaging (WSI) displays

magnified images with high resolution and clarity in the image viewing software.
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(Figure 2) Subjective evaluation of the images: Different scanner manufacturers have specific

quality requirements for the slides. However, when the slides have various flaws, all scanners face
challenges in achieving accurate focus, leading to scanning failures. Some scanners exhibit higher
sensitivity than others, which may cause background-contaminated slides to display uneven color

stripes in the whole slide imaging (WSI).
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(Table 1) The algorithm test results (AUC) were compared among different scanners, with the
graph's horizontal axis representing the false positive rate and the vertical axis representing the true

positive rate.



P4| Application of Fine-grained Vision Transformer Adapter in

Cytopathology

Miao Wang?, Xueyan Wang?, Yawei Li?, Yue Zhang®

YBeijing Friendship Hospital,Capital Medical University, ?Ideepwise on Artificial Intelligence Robot
Technology (Beijing) Co., Ltd,

= Abstract =

Background:Given that identifying different pathological cells relies on specific classification
models, this limits the development of large-scale benchmark models in cellular pathology.
Therefore, we propose a classification model suitable for various cytologies.Methods: Firstly, we use
a pre-trained model, the Segment Anything Model (SAM), to create a large-scale cytopathology
image dataset comprising masks under more than 10,000,000 unique modalities.Subsequently, we
employ multiple independent pre-trained models from the iDeepWise deep learning model library
to pre-annotate all masked areas. Doctors manually annotate 1% of the data to determine the cell
types. We then develop a new fine-grained visual Transformer adapter that implements cellular
pathology knowledge for positional embedding. This approach enables the creation of a multi-task
classification model without any additional or pre-defined tasks and applied to cellular pathology
image classification. During model training, we use 1% of the annotated data to correct model
training parameters, thereby avoiding bias in the model's training iteration direction. At the encoder
stage, we employ an attentional convolutional network to capture the variety of features in the fine-
grained details. Results: Ultimately, we obtained a cytopathology fine-grained vision transformer
adapter applicable to various cytologies learning and classification task, including cervical cells,
urine cells, peritoneal cells, sputum cells, and thyroid cells. Empirical evaluations on major
benchmark datasets showed that our method outperforms not only in achieving leading-level
performance but also surpasses a series of cutting-edge pathological cell image classification
methods, such as ResNet-50, VIT, and Swin-Transformer. Conclusion: Our fine-grained vision

transformer adapter model can be used as a benchmark large model in cytopathology.

Cervical = Urinary Peritoneal Sputum  Thyroid

Method

cells cells cells cells cells
Resnet-50 92.34 92.8 94.42 94.34 91.74
VIT 94.87 94.1 95.81 95.46 93.78
Swin-Transformer 97.22 96.5 97.35 94.61 95.04

Our Model 96.59 98.6 98.83 95.87 96.57




P5 Vision Transformer (C XAt IEARDE B 4iER

BRI BIRAE
Automated Classification and Visualization of Lung Cytological

Specimen Using Vision Transformer

SRR Y, BERTY 2, WLHA DY, EHRT ), SR Y,

SRAR Y, BHLG

LAY BETFE O, BEERNAY EXS ME2NY 0. MELSRE ), BEENAY E
FED ITIRESIRIE . IREAY T30

Atsushi Teramoto ), Ayano Michiba 2, Yuka Kiriyama ?3 , Eiko Sakurai ?, Tetsuya Tsukamoto 2, Kazuyoshi
Imaizumi ¥, Hiroshi Fujita °

Y Faculty of Information Engineering, Meijo University, 2 Department of Diagnostic Pathology, Fujita Health
University School of Medicine, 3 Narita Memorial Hospital, ¥ Department of Respiratory Medicine, Fujita

Health University School of Medicine, * Faculty of Engineering, Gifu University

ANTHIEZACEZEBESETANT) X LDOVOEDICEARIAR =2 —TFT LAy PT =7
(Convolutional neural network, CNN) 3% ¥ | #If@2FEA D3 HIC b BN RGO NS &
EDTEDID LENT WS, AL INT TSz an vt ¥ AP RGERE TR & L - idli
SR D KR M AL B Y FLA C© X 72, E4E, HEIRIERS ChatGPT %o H A S FEALH
DMHEENI E L KM ELTEHEY, ZnboEfficld CNN Tld7Z <. Attention #ZE A L 7=
Transformer & PRI 2 5l % FIF L T %, Transformer (2 HAR S 25771 Tl 7e < HRLEE~)GH
A[AETH Y . Vision Transformer 7% & OEFUIE TV S REI N TS, AFKEXRTIE Vision

Transformer % > THlifliEE2ERA o H B8h#E LI L S FER Lo v L Z# 3 7= fE R 2 5 3 5,



P7| Validation of Galen Prostate and Galen Breast Al

solutions in a Japanese cohort

Kris Lami 1), Han-Seung Yoon 1), Anil V. Parwani 2), Hoa Hoang Ngoc Pham 1), Yuri Tachibana 1), 3),
Chaim Linhart 4), Maya Grinwald 4), Manuela Vecsler 4), Junya Fukuoka 1), 3).

1) Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences,
2) Department of Pathology, The Ohio States University Wexner Medical Center,

3) Department of Pathology, Kameda Medical Center,

4) Ibex Medical Analytics

Background

Prostate and breast cancer incidence rates have been on the rise in Japan, emphasizing the need for precise
histopathological diagnosis to determine patient prognosis and guide treatment decisions. This study
aimed to validate the performance and clinical utility of two artificial intelligence (AI) solutions in the
detection of prostate and breast cancer in real world clinical routine use in a in a Japanese cohort, also

assessing their grading capabilities.

Design

The research entailed a retrospective examination of 200 consecutive prostate and breast core needle
biopsy cases (741 WSIs for prostate cases and 678 WSIs for breast cases) obtained from a Japanese
institution. All slides were scanned previously with the Philips Ultrafast Scanner (Philips Digital
Pathology Solution, Netherlands) at 40x magnification. The digitized slides were blindly processed by the
Al solutions. Alerts were triggered in case of discrepancies between the Al results and the ground truth
(GT), which was based on the original sign-out reports, prompting a second review by independent
subspecialist pathologists.

Results

The Al solutions showed accurate cancer detection, with AUCs of 0.988 (95%CI: [0.975;1]) and 0.997
(95% CI: [0.992;1]) for the Galen Prostate and Galen Breast, respectively. Additionally, the Al showed
high accuracy for the detection of DCIS with an AUC of 0.996 (95% CI: [0.987;1]). Galen Prostate was
able to detect a higher Gleason score in 4 adenocarcinoma cases and detect a previously unreported cancer.
Overall, 5 cases had their diagnoses revised based on the Al system’s alerts, corresponding to a revision
rate of 5% among the 100 prostate needle biopsies analysed. The AI solutions successfully identified

relevant pathological features, such as perineural invasions and lymphovascular invasions.

Conclusions

These findings demonstrated high accuracy of these Al solutions irrespective of the geographical origin
and different lab pre-analytics, with the potential to enhance the precision and efficiency of prostate and
breast cancer diagnosis in Japan. Furthermore, this validation paves the way for broader adoption of Al as
decision support tools within the Asian population, potentially leading to improved patient outcomes and

decreased healthcare costs.
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